The Malaysian Journal of Analytical Sciences Vol 16 No 3 (2012): 241 – 246

 

 

 

INCORPORATION OF CYCLOTRIPHOSPHAZENES AS PENDANT GROUPS TO THE SAGO NETWORK

 

(Percantuman Siklofosfazena sebagai Kumpulan Terikat kepada Rantaian Sagu)

 

Zainab Ngaini*1, Khairul Aidil Azlin Abd Rahman2, Nazlina Shaari2, Hasnain Hussain1,

 Norhaizat Sundin2, Teng Jingxin1

 

1Department of Chemistry,  Faculty of Resource Science and Technology,

 2Department of Design Technology, Faculty of Applied and Creative Arts,

Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak

 

*Corresponding author: nzainab@frst.unimas.my

 

 

Abstract

Cyclotriphosphazene-incorporated sago wastes as pendant groups have been prepared and structurally characterized using FT-IR and SEM.  The chemically modified sago wastes composite was applied with binders and developed as sound absorbing panels.  These panels are a class of organic-inorganic based materials that exhibit excellent fire retardant properties. Sound absorbance test has given a higher value at 250, 500 and 2000 Hz, which indicates the suitability of the panel for used in medium frequency. The panel was 51% lighter compared to fiberboard. The function and basic manufacturing of sound absorbers products was aligned with the present products in the market.

 

Keywords: sago waste, cyclotriphosphazene, fire retardant; sound absorber panel

 

References

1.       Singhal R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J. & Akmar P. F., 2008. Industrial production, processing and utilization of sago palm-derived products. Journal of Carbohydrate Polymers 72:1-20.

2.       Bujang, K, Apun, K. & Salleh, M. A. 1996.  A Study in the Production and Bioconversion of Sago Waste. In Sago-The future Source of Food and Feed, edited by Jose C, Rasyad A, Riau University Press, Indonesia:  195-201.

3.       Inoue, K., Nakamura, H., Ariyoshi, S., Takagi, M. & Tanigaki, T. 1989. Heat Resistance Polymers Prepared from [(4′-(2-Vinyl)-4-Biphenylyl)Oxy] Pentachlorocyclo-triphosphazene. Macromolecules 22(12): 4466-4469.

4.    Selvaraja, I. I. & Chandrasekhar, V. 1997. Copolymerization of 2-(4-vinyl-4-biphenylyloxy)pentachlorocyclotriphosphazene with Acrylate and Methacrylate Monomers. Polymer 38(14): 3617-3623.

5.       Muraki, T., Ueta, M., Hara, E. & Inoue, K. 2004. Enhancement of thermal stability of polystyrene and poly(methyl methacrylate) by cyclotriphosphazene. Polymer Degradation and Stability 84: 87- 93

6.       Liu, R. & Wang, X. 2009. Synthesis, Characterization, Thermal Propereties and Flame Retardancy of a Novel Nonflammable Phosphazene-Based Epoxy Resin. Polymer Degradation and Stability 94(4): 617-624.

7.       Kruszynski, R., Siwy, M., Iwona, P.-C., & Trzesowska, A. 2006.  A New Regioselective Method of Macrobicyclic Schiff Bases Synthesis.  Inorganica Chimica Acta 359: 649-658.

 

 

Previous                    Content                    Next