The Malaysian Journal of Analytical Sciences Vol 16 No 3 (2012): 228 – 234

 

 

 

CHEMICAL PROPERTIES OF JUVENILE LATEX TIMBER CLONE RUBBERWOOD TREES

 

(Sifat Kimia Klon Kayu Getah Juvenil)

 

Junaiza Ahmad Zaki1, Suhaimi Muhammed1, Amran Shafie1 and Wan Rosli Wan Daud2

 

1Faculty of Applied Sciences,

UiTM Pahang, 26400 Bandar Tun Abdul Razak, Jengka, Pahang Darul Makmur, Malaysia

2School of Industrial Technology,

Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

*Corresponding author:

 

 

Abstract

Latex timber clone (LTC) rubberwwod trees were introduced by Lembaga Getah Malaysia (LGM) for obtaining good yield of latex as well as the quality timber. Two juvenile clones namely RRIM2009 and RRIM2024 were selected for measuring the chemical properties based on TAPPI standards and were assessed at different height levels (top, middle and bottom). These chemical properties of wood can serve as an indicator for predicting the wood behavior for specific end usage. The findings revealed that there were significant variation between the clones and the highest value was obtained at the bottom portion except for lignin content. Clone RRIM2009 exhibited higher percentage of ash content (0.80%) and lignin content (17.30%). While Clone RRIM2024 has greater value of holocellulose content (58.58%) and alpha-cellulose content (41.41%). According to the different height levels, top portion exhibited highest lignin content (17.64% for RRIM2009 and 16.75% for RRIM2024). While bottom portion exhibited highest holocellulose (58.93% for RRIM2009 and 60.56% for RRIM2024), highest alpha-cellulose (39.75% for RRIM2009 and 43.02% for RRIM2024) and highest ash content (0.85% for RRIM2009 and 0.71% for RRIM2024). As a whole, clone RRIM2024 gave higher value except for lignin and ash content compared to RRIM2009. Thus, the potential of using such LTC rubberwood trees for specific purposes is promising.

Keywords: latex timber clone, juvenile rubberwood, chemical properties, wood behavior

 

References

1.       Abd. Latif, M., Khoo, K. C. & Jamaludin, K. (1992). Fibre Morphology and Chemical Properties of Gigantochloa Scortechinii. Journal of Tropical Forest Science, 6(4), 397-407.

2.       Balaban, M. dan Ucar, G. (2001). “Extractive and structural components in wood and bark of Endemic Quercus VulcanicaBoiss”. Holzforschung 55; 5. Page 478-486.

3.       Bendsten, B.A. (1978). Properties of wood from improved and intensively managed trees. Forest Prod. J. 28 (10):   Page 61-72.

4.       Breness, M.D. (2006). Biomass and Bioenergy. Nova Science Publication Inc.

5.       Bowyer, J.L., Shmulsky, R. and Hygreen, J.G. (2007). Forest Products & Wood Science; An introduction, 5th Edn., Iowa: Blackwell Publishing. 47-58.

6.       Buletin Getah Asli, Edisi Khas. (1999), ISSN 1511-2500, Lembaga Getah Malaysia.

7.       Hill A.C. (2006).Wood Modification, 1st Edn., USA: John Wiley & Sons . Page 25.

8.       Hong, L.T. dan Sim, H.C. (1994). Products from Rubberwood – An Overview. Rubberwood Processing and   Utilization. Malayan Forest Record No. 39. Page 173 – 183.

9.       Jane, F.W., Wilson, K., dan White, D.J.B. (1970). The Structure of Wood. London: Adam and Charles Black.    Page 170.

10.    Kollmann F.P., dan Côté, W.A. (1975). Principle of Wood Science and Technology. Vol. 1: Solid Wood. Springer-Verlag. Page 170-171.

11.    Lewin, M. dan Goldstein, I.S. (1991). Wood Structure and Composition . New York: Marcel Dekker, Inc. Page 488.

12.    Lim, S. C. & Gan K. S. (2005). Characteristics and utilization of oil palm stem. Timber Technology Buletin, FRIM, 139-258.

13.    Miller R.B. (1999). Structure of Wood. Chapter 2. Wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products  Laboratory. Page 463.

14.    Richard, J.T. (1980). Wood Anatomy and Ultrastructure. Department of Wood and Paper Science. North Carolina State University. Pages 23-24.

15.    Saka, S. dan Goring DAI. (1985). Localization of Lignins in wood cell walls. In: Higuchi T (ed) Biosynthesis and         biodegradation of wood components. Orlando: Academic Press. Pages 51-62.

16.    Sjöström, E. (1993). Wood Chemistry: Fundamentals and Applications, 2nd Ed., San Diego, California: Academic Press Inc. Page 293.

17.    Syor Penanaman Getah LGM (2003), LGM Monograf, No. 8, Terbitan Lembaga Getah Malaysia.

18.    Technical Association of the Pulp and Paper Industry (TAPPI) (1997). Solvent extractives of wood and pulp. (T 204 cm-97). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

19.    Technical Association of the Pulp and Paper Industry (TAPPI) (1999). Water solubility of wood and pulp. (T 207              cm-99). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

20.    Technical Association of the Pulp and Paper Industry (TAPPI) (2002). Ash in wood, pulp, paper and paperboard: combustion at 525°C (T 211 om-02). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

21.    Technical Association of the Pulp and Paper Industry (TAPPI) (2002). One percent sodium hydroxide solubility of wood and pulp (T 212 om-02). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

22.    Technical Association of the Pulp and Paper Industry (TAPPI) (2002). Acid-insoluble lignin in wood and pulp (T                222 om-02). Technical Association of the Pulp and Paper Industry, Atlanta, GA

23.    Technical Association of the Pulp and Paper Industry (TAPPI) (2002). Sampling and preparing wood for analysis (T257 cm-02). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

24.    Technical Association of the Pulp and Paper Industry (TAPPI) (2002). Alpha-, beta- and gamma-cellulose in pulp (T 203 cm-99). Technical Association of the Pulp and Paper Industry, Atlanta, GA.

25.    Via, B. K., So, C. L., G, L. H., Shupe, T. F., Stine, M.and Wikaira, J. (2007). Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle.   IAWA Journal, Vol. 28 (2). Pages 189–209.

26.    Wan Rosli, W.D., Zainuddin, Z., Law, K.N. & Asro, R. (2007). Pulp from oil palm fronds by chemical processes.                 Industrial Crops and Products, 25(1).  Pages 89–94.

27.    Wise, L. E., Murphy, M. and D`Addieco, A. A. (1946). Chlorite holocellulose: Its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 122(2). Pages 35-43.  

 

Previous                    Content                    Next