The Malaysian Journal of Analytical Sciences Vol 16 No 1 (2012): 31 – 38

 

 

 

OPTIMIZATION STUDY FOR REMOVAL OF RADIUM-226 FROM RADIUM-CONTAMINATED SOIL USING HUMIC ACID

 

(Kajian Pengoptimuman Penyingkiran Radium-226 Daripada Tanih Tercemar Radium

Dengan Menggunakan Asid Humik)

 

Esther Phillip1,2 *, Muhamad Samudi Yasir1, Muhamat Omar2, Mohd Zaidi Ibrahim2, Zalina Laili2

 

1School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.

2 Waste and Environmental Technology Division,

Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.

 

*Corresponding author: esther@nuclearmalaysia.gov.my

 

 

Abstract

This study discusses the various parameters involved in the removal of radium-226 from radium-contaminated soil using humic acid extracted from Malaysian peat soil. The parameters studied included the contact time, the pH and the concentration of humic acid solution and the liquid/solid ratio. The optimum removal efficiency of radium-226 was achieved after 24 hours of agitation. Further agitation did not contribute to any increase in the removal efficiency of radium-226. Meanwhile, the removal efficiency of radium-226 was optimum when the humic acid concentration was 100 ppm. The greatest removal efficiency of radium-226 was obtained using highly basic humic acid solutions of pH 10 – 11. Humic acid solutions of basic pH 8 – 9 resulted in comparable removal efficiency to humic acid solutions of pH 7. Nevertheless, acidic humic acid solutions showed the lowest removal efficiency of radium-226. For the purpose of this study, humic acid solutions of pH 7 were used throughout the study. A ratio of 20 mL humic acid solution to 1 g soil sample was found as the optimum value. Any further increment in the ratio did not contribute to the removal efficiency of radium-226.

 

Keywords: Radium-226, Humic Acid, Contact time, pH, Concentration, Liquid/solid ratio

 

References

1.        Frame, P. 2007. Radioluminescent paint. http://www.orau.org/ptp/collection/radioluminescent/radioluminescentinfo.htm.

2.        Eisenbud, M. and Gesell, T. 1997. Environmental radioactivity. From natural, industrial and military sources. UK: Academic  Press.

3.        EPA. 2004. Understanding variation in partition coefficient, Kd, values. Volume III: Review of geochemistry and available Kd values for americium, arsenic, curium, iodine, neptunium, radium, and technetium. EPA 402-R-04-002C. Washington: Unites States Environmental Protection Agency.

4.        Koczorowska, E., Nieloch, M. and Slawinski, J. 2002. Model radioisotope experiments on the influence of acid rain on Zn-65 binding with humic acid. Nukleonika, 47(4): 167-172.

5.        Bowen, H.J.M., Page, E., Valente, I. and Wade, R.J. 1979. Radio-tracer methods for studying speciation in natural waters. Journal of Radioanal. Chem., 48: 9-16.

6.        Omar, M. and Bowen, H.J.M. 1982. Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters. Journal of Radioanalytical & Nuclear Chemistry, 74(1-2): 273-282.

7.        Marquardt, C.M. 2000. Influence of humic acids on the migration behaviour of radioactive and non-radioactive substances under conditions close to nature. Final report BMBF Project No. 02E87958. Forschungszentrum Karlsruhe GmbH, Karlsruhe.

8.        Moulin, V. 2005. Complexation of radionuclides with humic substances. In. Perminova, I.V., Hatfield, K. and Hertkorn, N. (eds). Use of humic substances to remediate polluted environments: From theory to practice, pp. 155-173. The Netherlands: Springer.

9.        Ibarra, J.V., Osacar, J. and Gavilain, G.M. 1977. Ann. Quim., 77: 224-229.

10.     Bertha, E.L. and Choppin, G.R. 1978. Interaction of humic and fulvic acids with Eu(III) and Am(III). J. Inorg. Nucl. Chem. 40(4): 655-658.

11.     Nash, K.L. and Choppin, G.R. 1980. Interaction of humic and fulvic acids with Th(IV). J. Inorg. Nucl. Chem., 42: 1045-1050.

12.     Shanbhag, P.M. and Choppin, G.R. 1981. Binding of uranyl by humic acid. J. Inorg. Nucl. Chem., 43: 3369-3372.

13.     Torres, R.A. and Choppin, G.R. 1984. Europium(Ill) and americium(III) stability constants with humic acids. Radiochim. Acta, 35: 143-148.

14.     Carlsen, L. 1985. Radionuclide - soil organic matter interactions. European Appl.Res.Rept. Nucl.Sci.Technol., 6: 1419–1476.

15.     Kim, J.I. and Sekine, T. 1991. Complexation of neptunium (V) with humic acids. Radiochim. Acta, 55: 187-192.

16.     Maes, A., De Brabandere, J. and Cremers, A. 1991. Complexation of Eu3+ and Am3+ with humic substances. Radiochim. Acta, 52-53: 41-47.

17.     Stevenson, F.J. 1994. Humus chemistry: Genesis, composition, reactions. 2nd ed. New York: Wiley.

18.     Takahashi, Y., Minai, Y., Meguro, Y., Toyoda, S. and Tominaga, T. 1994. Ionic strength and pH dependence of binding constants of Am(III)- and Eu(III)- humate. J. Radioanal. Nucl. Chem., 186: 129-141.

19.     Samadfam, M., Niitsu, Y., Sato, S. and Ohashi, H. 1996. Complexation thermodynamics of Sr(II) and humic acid. Radiochim. Acta, 73: 211-216.

20.     Niitsu, Y., Sato, S., Ohashi, H., Sakamoto, Y., Nagao, S., Ohnuki, T. and Muraoka, S. 1997. Effects of humic acid on the sorption of neptunium(V) on kaolinite. J. Nucl. Mater., 248: 328-332.

21.     Zachara, J.M., Smith, S.C. and Resch, C.T. 1994. Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components. Geochim. Cosmochim. Acta, 58: 553-566.

22.     Laili, Z., Yasir, M.S., Omar, M., Ibrahim, M.Z. and Phillip, E. 2010. Influence of humic acids on radium adsorption by coir pith in aqueous solution. Sains Malaysiana, 39(1): 99-106.

23.     Choppin, G.R. 1988. Humics and radionuclide migration. Radiochim. Acta, 44-45: 23-28.

24.     Samadfam, M., Jintoku, T., Sato, S. and Ohashi, H. 1998. Effect of pH on stability constants of Sr(II)-humate complexes. Journal of Nuclear Science and Technology, 35(8): 579-583.

25.     Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X. and Cai, X. 2009. The study of operating variables in soil washing with EDTA. Environmental Pollution, 157: 229-236.

26.     Landa, E.R. and Reid, D.F. 1982. Sorption of radium-226 from oil-production brine by sediments and soils. Environ Geol., 5: 1-8.

27.     Benes, P. and Strejc, P. 1986. Interaction of radium with freshwater sediments and their mineral components: IV. Wastewater and riverbed sediments. Journal of Radioanalytical and Nuclear Chemistry, 99: 407-422.

28.     ATSDR. 1990. Toxicological profile for radium. http://www.atsdr.cdc.gov/toxprofiles/tp144.pdf.

29.     Smith, B. and Amonette, A. 2006. The environmental transport of radium and plutonium: A review. Maryland: Institute for Energy and Environmental Research.

30.     Wu, J. and Nofziger, D.L. 2001. Diffusion of solute in soil media.  http://soilphysics.okstate. edu /software /Diffusion /document.pdf

31.     Reed, B.E., Carriere, P.C. and Moore, R. 1996. Flushing of a Pb(II) contaminated soil using HCl, EDTA and CaCl2. J. Environ. Eng., 121: 48-50.

32.     Peters, W.R. 1999. Chelant extraction of heavy metals from contaminated soil. J. Hazard Mater., 66: 151-210.

33.     Stevenson, F.J. and Vance, G.F. 1989. Naturally occuring aluminium-organic complexes. In: Sposito, G. (ed). The Environmental Chemistry of Aluminium, pp. 117-146. Boca Raton, Florida: CRC Press, Inc.

34.     Fukushima, M., Tanaka, S., Nakamura, H. and Ito, S. 1996. Acid-base characterization of molecular weight fractionated humic acid. Talanta, 43: 383-390.

35.     Avena, M.J. and Wilkinson, K.J. 2002. Disaggregation kinetics of a peat humic acid: Mechanism and pH effects. Environmental Science Technology, 36: 5100-5105.

36.     Dempsey, B.A., Ganho, R.M. and O’Melia, C.R. 1984. The coagulation of humic substances by means of aluminium salts. J. Am. Water Works Assoc., 76(141).

37.     Baeza, A., Fernandez, M., Herbanz, M., Legarda, F., Miro, C., and Salas, A. 2006. Removing uranium and radium from a natural water. Water, Air, and Soil Pollution, 173: 57-69.

38.     Güngör, E.B.Ö. and Bekbölet, M. 2010. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159(1-2): 131-138.

39.     Spark, K.M., Wells, J.D. and Johnson, B.B. 1997. The interaction of humic acid with heavy metals. Australian Journal of Soil Research, 35: 89-101.

40.     Ganter, C. 2007. Stabilization of soil organic matter by mineral surfaces. Term Paper in Biogeochemistry and Pollutant Dynamics, M.Sc. Environmental Sciences, ETH Zürich, 1-13.

 

Previous                    Content                    Next