The Malaysian Journal of Analytical Sciences Vol 16 No 1 (2012): 88 – 93

 

 

 

FLUORINE-18: CURRENT APPROACH IN RADIOLABELLING AND RADIATION SAFETY ASPECTS

 

(Fluorin-18: Pendekatan Semasa dalam Pengradiopenglabelan dan Aspek Keselamatan Sinaran)

 

Suzilawati Muhd Sarowi1*, Noriah Ali1 and Noratikah Mat Ail2

 

1Radiation Safety Division,

Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia.

2Nuclear Medicine Department,

Ground Floor, Putrajaya Hospital,Precinct 7, 62250 Putrajaya, Malaysia.

 

*Corresponding author: suzie@nuclearmalaysia.gov.my

 

 

Abstract

Positron Emission Tomography (PET) imaging has currently become an important technique to study physiological, biochemical and pharmacological functions in humans. The radiopharmaceuticals or tracers for the PET scan incorporating the positron emitting radioisotopes such as Fluorine-18, Carbon-11, Nitrogen-13 and Oxygen-15. A Fluorine -18 (18F) is oftenly used in development of radiopharmaceuticals due to its favourable physical and nuclear characteristics. By far, the most common radiopharmaceutical used in PET imaging is 2-[18F]-fluoro-2-deoxy-D-glucose, or [18F]FDG. There are several approaches in radiolabelling using 18F and the disadvantage is the time consuming multi-step reactions. Therefore, there is a need to make the radiolabelling prosess more speedy. Once working with radionuclide, the radiation safety is concerned and must be addressed. This paper will discuss on the current approach in the 18F radiolabelling using  “click reaction” based on paper review and a practical aspects of radiation safety. The advantages of this system are cheap, does not require an inert atmosphere, can be perfomed in the presence of water and eliminates the need for a base. As a result, the radiolabelling prosess can be performed in shorter time and a good yield.

 

Keywords:  Fluorine-18, click reaction and radiation safety

 

References

1.       Comar D(ed). Positron emission tomography for drug development and evaluation. 1995: Kluwer Academic Publishers, Boston.

2.       Dijkgraaf I, Boerman OC, Oyen WJG, Corstens FHM, Gotthardt M. (2007)  Development and application of peptide-based radiopharmaceuticals. Anti-Cancer Agents in Medicinal Chemistry. 7: 543-551.

3.       Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals, radiochemistry and applications. 2003: John Wiley & Sons Ltd., England.

4.       Mercer JR. (2007)  Molecular imaging agents for clinical positron emission tomography in oncology other than fluorodeoxy glucose (FDG): applications,limitations and potential. Journal of Pharmacy and Pharmaceutical Sciences. 10: 180-202.

5.       Nanni C, Rubello D, Al-Nahlas A, Fanti S. (2006)  Clinical PET in oncology: not only FDG. Nuclear Medicine Communications. 27: 685-688.

6.       Schirrmacher R, Wangler C, Schirrmacher E. (2007)  Recent developments and trends in 18F-radiochemistry: syntheses and applications. Mini Review in Organic Chemistry. 4: 317 – 329.

7.       Kolb HC, Finn MG, Sharpless KB. (2001)  Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition. 40: 2004-2021.

8.       Kolb HC, Sharpless KB. (2003)  The growing impact  of click chemistry on drug discovery. Drug Discovery Today. 8: 1128-1136.

9.       Tornoe CW, Christensen C, Meldal M. (2002)  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. Journal of Organic Chemistry. 67: 3057-3064.

10.    Van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG. (2007)  Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature. 446: 1105-1109.

11.    Hong V, Presolski SI, Ma C, Finn MG. (2009)  Analysis and optimization of copper-catalyzed azide–alkyne cycloaddition for bioconjugation. Angewandte Chemie International Edition. 48: 9879-9883.

12.    Bock VD, Hiemstra H, Maarseveen JH. (2006)  CuI- catalyzed alkyne-azide "click" cycloaddition from a mechanistic and synthetic perspective. European Journal Organic Chemistry. 1: 51-68.

13.    Hein CD, Liu XM, Wang D. (2008)  Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research. 25: 2216-2230.

14.    Marik J, Sutcliffe JL. (2006)  Click for PET: rapid prepation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Letters. 47: 6681-6684.

15.    Kim DH, Choe YS, Jung KH, Lee KH, Choi JY, Choi Y, Kim BT. (2008)  A 18F-labelled glucose analog: synthesis using a click labeling method and in vitro evaluation. Archives of Pharmacal Research. 31: 587-593.

16.    Evans RA. (2007)  The rise of azide-alkyne 1,3-dipolar 'click' cycloaddition and its application to polymer science and surface modification. Australian Journal Chemistry. 60: 384-395.

17.    Okarvi SM. (2001)  Recent progress in fluorine-18 labelled peptide radiopharmaceuticals. European Journal Nuclear Medicine. 28: 929-938.

18.    Glaser M, Robins EG. (2009)  'Click labelling' in PET radiochemistry. Journal of Labelled Compounds and Radiopharmaceuticals. 52: 407-414.

19.    Gree D, Gree R. (2007)  A new strategy for the synthesis of optically active benzylic fluorides and corresponding five-membered heteroaromatic analogues. Tetrahedron Letters. 48: 5435-5438.

20.    Bixler A, Springer G, Lovas R. (1999)  Practical aspects of radiation safety for using fluorine-18. Journal Nuclear Medicine Technology. 27: 14-16.

21.    www.nchps.org. Nuclide safety data sheet fluorine-18.

 

 

 

 

Previous                    Content                    Next