Malaysian Journal of Analytical Sciences Vol 15 No 1 (2011): 1 – 7






Norfazrin Mohd Hanif1 , Mohd Talib Latif2, Mohammed Rozali Othman1*


1School of Chemical Sciences and Food Technology,

2School of Environmental and Natural Resource Sciences,

Faculty of Science and Technology, Universiti Kebangsaan Malaysia,

43600, UKM Bangi, Selangor.


*Corresponding author:




Lake ecosystem is a sources of natural organic matter characteristic by humic-like substances (HULIS) believe to have high amount of surface active agents (surfactants) which capable to influence the cloud and climate. This study determined the concentration of anionic surfactants in the atmosphere around lake ecosystems at Kenyir, Terengganu. Aerosols samples were collected by using a High Volume Air Sampler (HVAS) equipped with high volume impactor (to separate between fine and coarse mode aerosols) and glass-fibre filter paper at flow rate of 1.13 m3min-1 for 24 hours. Several possible sources of natural surfactants in the atmosphere e.g. soils, vegetations and surface water were also collected in order to determine the possible sources and flux of anionic surfactants in the atmosphere. Anionic surfactant was analysed based on colorimetric methods by using methylene blue active substances (MBAS) and UV-visible spectrophotometer at 650 nm. Subsequently, simplified calculations were conducted in estimating the flux of anionic surfactants from various possible sources. The results indicated that the concentration of anionic surfactants in aerosols (coarse and fine mode), soil, vegetation and surface water were 59.17 ± 2.61 μmol/m3 and 78.10 ± 9.30 μmol/m3, 0.33 ± 0.17 μmolg-1, 0.28 ± 0.08 μmolg-1 (dry weight) and 0.01 ± 0.004 μmolL-1, respectively. The overall flux of surfactants signified that soils provide the highest amount of surfactants which is 119.39 Mmolyr-1 in comparison to other possible sources (vegetation = 26.88 Mmolyr-1and surface water = 12.1 x 10-6 Mmolyr-1). Results indicated that soil become a significant natural source of anionic surfactants to the atmosphere which may due to the availability of HULIS.


Keywords : anionic surfactants, lake ecosystems, flux of anionic surfactants, HULIS



1.     Facchini, M. C. Mircea, M., Fuzzi, S. & Charlson, R. J. (2001). Comments on ''Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute''. Journal of the Atmospheric Sciences, 58, 1465-1467.

2.     Grasset, L. & Ambles, A. (1998a). Structure of humin and humic acid from an acidic soil as revealed by phase transfer catalyzedhydrolysis. Organic Geochemistry, 29, 881-891.

3.     Grasset,L. & Ambles, A. (1998b). Structural study of soil humic acid and humin using a new preparative thermochemolysis technique. Journal of Analytical and Applied Pyrolysis, 47, 1-12.

4.     Stevenson, F.J. (1994). Humus chemistry: Genesis, composition, reactions. John Wiley & Sons, Inc

5.     Kiss, G., Tombacz, E., Varga, B., Alsberg, T. & Persson, L. (2003). Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmospheric Environment, 37, 3783-3794.

6.     Hanninen, K & Niemela, K. (1992). Alkaline degradation of peat humic acids. Part II. Identification of hydrophilic products. Acta Chemica Scandinavica, 46, 459-463.

7.     Latif, M. T., Brimblecombe, P., Ramli, N. A., Sentian, J., Sukhapan, J. & Sulaiman, N. (2005). Surfactants in South East Asian aerosols. Environmental Chemistry,  2, 198-204.

8.     Williams, J. (2004). Organic trace gases in the atmosphere: An overview. Environmental Chemistry, 1, 125-136.

9.     Andrea, M. O & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmosphere chemistry. Science, 276, 1052-1058.

10.  Saxena, P. & Hildemann, L. M. (1996). Water-Soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, Journal of Atmospheric Chemistry, 24, 57-109.

11.  Cavalli, F., Facchini, M. C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y. J., O’Dowd, C. D., Putaud, J.-P. & Dell’Acqua, A. (2004). Advances in characterization of size resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysic Research 109, 10375-10376.

12.  Russell, L. M., Maria, S. F. & Myneni, S. C. B. 2002. Mapping organic coatings on atmospheric particles. Geophysic Research Letter, 29, 10375-10376.

13.  Sempere, R. & Kawamura, K. (2003). Trans-hemispheric contribution of C2-C10 alpha omegadicarboxylic acids and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochemical Cycles. 17, 10375- 10376.

14.  Mochida, M., Kitamori, Y., Kawamura, K., Nojiri, Y. & Suzuki, K. (2002). Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on seasalt particles, Journal of Geophysic Research, 107, 10376

15. Harvey, G.W. (1966). Microlayer collection from the sea surface : A new method and initial results. Applied Oceanography, 11(4) : 608-613

16.  Brimblecombe, P. (1996). Air Composition and Chemistry, 2nd Edition/Ed. Cambridge University Press, Cambridge.

17.  Andreae, M. O. (1991). Global Biomass Burning: Atmospheric, Climatic and Biospheric Implication. MIT Press, Cambridge.

18.  Andreae, M. O. (1995). Climatic Effects of Changing Atmospheric Aerosol Levels. Elsevier, Amsterdam.

19.  Alotaibi, Y. (2004). Chemistry of Humic-like Substances in the Atmosphere. PhD Thesis, University of East Anglia, Norwich.

20.  Seinfeld, J. H. & Pandis, S. N. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, New York.

21.  Latif, M. T. (2006). Characteristics and distribution of surfactants in the atmosphere., PhD Thesis, University of East Anglia, Norwich.

22.  Subbalakshmi, Y., Patti, A. F., Lee, G. S. H. & Hooper, M. A. (2000). Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR. Journal of Environmental Monitoring, 2, 561-565.

23.  Chefetz, B., Tarchitzky, J., Deshmukh, A. P., Hatcher, P. G. & Chen, Y. (2002). Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Science Society of America Journal, 66, 129-141.

24.  Alves, C., Pio, C. & Duarte, A. (1999). The Organic Composition Urban Portuguese Areas of Air Particulate Matter from Rural. Physical Chemistry of Earth (B), 6, 705-709.

25.  Havers, N., Burba, P., Lambert, J. & Klockow, D. (1998). Spectroscopic characterization of humiclike substances in airborne particulate matter. Journal of Atmospheric Chemistry, 29: 45–54.

26.  Smoydzin, L & von Glasow, R. (2006). Do organic surface films on sea salt aerosols influence atmospheric chemistry? – A model study. Atmos. Chem. Phys. Discuss., 6: 10373–10402.

27. Botte, V. & Mansutti, D. (2005). Numerical modelling of the Marangoni effects induced byplankton-generated surfactants. Journal of Marine Systems. 57, 55– 69.